Skip to content
On this page

74. Search a 2D Matrix share

Problem Statement

You are given an m x n integer matrix matrix with the following two properties:

  • Each row is sorted in non-decreasing order.
  • The first integer of each row is greater than the last integer of the previous row.

Given an integer target, return true if target is in matrix or false otherwise.

You must write a solution in O(log(m * n)) time complexity.

 

Example 1:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: true

Example 2:

Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
Output: false

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

Solution:

rs
impl Solution {
    pub fn search_matrix(matrix: Vec<Vec<i32>>, target: i32) -> bool {
        let (mut rows, mut cols) = (0, matrix[0].len() - 1);

        while rows < matrix.len() && cols > 0 {
            if matrix[rows][cols] == target {
                return true;
            } else if matrix[rows][cols] > target {
                cols -= 1;
            } else {
                rows += 1;
            }
        }

        false
    }
}

...


Released under the MIT License.